Relevant Literature

  1. Spiegelman, B.M. (2013) Banting Lecture 2012: Regulation of adipogenesis: toward new therapeutics for metabolic disease. Diabetes, 62, 1774-1782.
  2. Lidell, M.E., Betz, M.J. and Enerback, S. (2014) Brown adipose tissue and its therapeutic potential. J Intern Med, 276, 364-377.
  3. Steinberg, G.R. (2018) Cellular Energy Sensing and Metabolism-Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture. Diabetes, 67, 169-179.
  4. Herz, C.T. and Kiefer, F.W. (2019) Adipose tissue browning in mice and humans. J Endocrinol, 241, R97-R109.
  5. Lee, P., Swarbrick, M.M. and Ho, K.K. (2013) Brown adipose tissue in adult humans: a metabolic renaissance. Endocr Rev, 34, 413-438.
  6. Kaisanlahti, A. and Glumoff, T. (2019) Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem, 75, 1-10.
  7. Yoneshiro, T. and Saito, M. (2015) Activation and recruitment of brown adipose tissue as anti-obesity regimens in humans. Ann Med, 47, 133-141.
  8. Lee, M.W., Lee, M. and Oh, K.J. (2019) Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med, 8.
  9. Zhang, B., Yang, Y., Xiang, L., Zhao, Z. and Ye, R. (2019) Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. J Cell Physiol.
  10. Hanna, J., Hossain, G.S. and Kocerha, J. (2019) The Potential for microRNA Therapeutics and Clinical Research. Front Genet, 10, 478.
  11. Ying, W., Riopel, M., Bandyopadhyay, G., Dong, Y., Birmingham, A., Seo, J.B., Ofrecio, J.M., Wollam, J., Hernandez-Carretero, A., Fu, W. et al. (2017) Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell, 171, 372-384 e312.
  12. Pan, Y., Hui, X., Hoo, R.L.C., Ye, D., Chan, C.Y.C., Feng, T., Wang, Y., Lam, K.S.L. and Xu, A. (2019) Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest, 129, 834-849.
  13. Li, Z. and Rana, T.M. (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov, 13, 622-638.
  14. Smith, CIE, Zain, R. Therapeutic Oligonucleotides: State of the Art. Annu Rev Pharmacol Toxicol. 2019;59:605-630.
  15. Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front Genet. 2019;10:478.
  16. Bennett, C.F. Therapeutic Antisense Oligonucleotides are coming of Age. Annual Review of Medicine. 2019 Jan 27;70:307-321.
  17. Levin, A.A. Treating disease at the RNA level with oligonucleotides. New Engl. J. Med. 2019 Jan 3;380(1):57-70: PMID: 30601736
  18. Crooke, S.T., X. H. Liang, B. F. Baker and R. M. Crooke. Antisense technology: a review. J Biol Chem. 2021 Feb 15; PMID: 33600796.
  19. Crooke, S. T., Baker, B. F., Crooke, R. M., Liang, X. H. Antisense technology: an overview and prospectus. Nat Rev Drug Discov. 2021; PMID: 33762737.
  20. Hammond SM, et al. Delivery of oligonucleotide-based therapeutics:
    challenges and opportunities. EMBO Mol Med. 2021. PMID: 33821570.
  21. Lheureux, S., M. Braunstein, and A.M. Oza, Epithelial Ovarian Cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin, 2019. 69(4): p. 280-304.
  22. Talhouk, A., et al., Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clin Cancer Res, 2020. 26(20): p. 5411-5423.
  23. Pascual-Anton, L., et al., Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci, 2021. 22(21).
  24. Yoshida, K., et al., The clinical impact of intra- and extracellular miRNAs in Ovarian Cancer. Cancer Sci, 2020. 111(10): p. 3435-3444.
  25. Deb, B., A. Uddin, and S. Chakraborty, miRNAs and Ovarian Cancer: An overview. J Cell Physiol, 2018. 233(5): p. 3846-3854.
  26. Mirahmadi, Y., et al., MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. J Oncol, 2021. 2021: p. 3408937.
  27. Croft, P.K., et al., Ovarian-Cancer-Associated Extracellular Vesicles: Microenvironmental Regulation and Potential Clinical Applications. Cells, 2021. 10(9).
  28. Liang, Z., et al., Targeting Membrane Receptors of Ovarian Cancer Cells for Therapy. Curr Cancer Drug Targets, 2019. 19(6): p. 449-467.
  29. Wallace-Povirk, A., et al., Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel), 2021. 14(1).
  30. Martin-Sabroso, C., et al., Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics, 2021. 14(1).
  31. Nieman, K.M., et al., Adipocytes promote Ovarian Cancer metastasis and provide energy for rapid tumor growth. Nat Med, 2011. 17(11): p. 1498-503.
  32. Motohara, T., et al., An evolving story of the metastatic voyage of Ovarian Cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene, 2019. 38(16): p. 2885-2898.
  33. Iyoshi, S., et al., Pro-tumoral behavior of omental adipocyte-derived fibroblasts in tumor microenvironment at the metastatic site of Ovarian Cancer. Int J Cancer, 2021. 149(11): p. 1961-1972.
  34. Mukherjee, A., et al., Adipocyte-Induced FABP4 Expression in Ovarian Cancer Cells Promotes Metastasis and Mediates Carboplatin Resistance. Cancer Res, 2020. 80(8): p. 1748-1761.
  35. Gharpure, K.M., et al., FABP4 as a key determinant of metastatic potential of Ovarian Cancer. Nat Commun, 2018. 9(1): p. 2923.